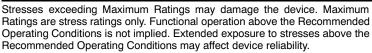
Power MOSFET

-12 V, -5.3 A, Single P-Channel, TSOP-6


Features

- Low R_{DS(on)} in TSOP-6 Package
- 1.8 V Gate Rating
- This is a Pb-Free Device

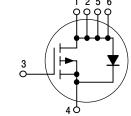
Applications

- Battery Switch and Load Management Applications in Portable Equipment
- High Side Load Switch
- PA Switch

MAXIMUM RATINGS (T _J = 25° C unless otherwise stated)								
Parameter		Symbol	Value	Unit				
Drain-to-Source Voltage			V _{DSS}	-12	V			
Gate-to-Source Voltage			V _{GS}	±8	V			
Continuous Drain	Steady	T _A = 25°C	I _D	-4.7	А			
Current (Note 1)	State	T _A = 85°C	1	-3.4				
	$t \le 5 s$	T _A = 25°C	1	-5.3				
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.25	W			
	$t \le 5 s$			1.6				
Continuous Drain	Steady	T _A = 25°C	I _D	-3.4	А			
Current (Note 2)	State	Siale	Siale	T _A = 85°C	1	-2.5		
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.7	W			
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-19	А			
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C			
Lead Temperature for Soldering Purposes			T _{STG} TL	150 260	°C			

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)

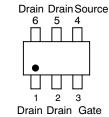
2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
-12 V	40 mΩ @ -4.5 V	-4.7 A
	53 mΩ @ −2.5 V	-4.1 A
	72 mΩ @ -1.8 V	-2.0 A


SE = Device Code Μ

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

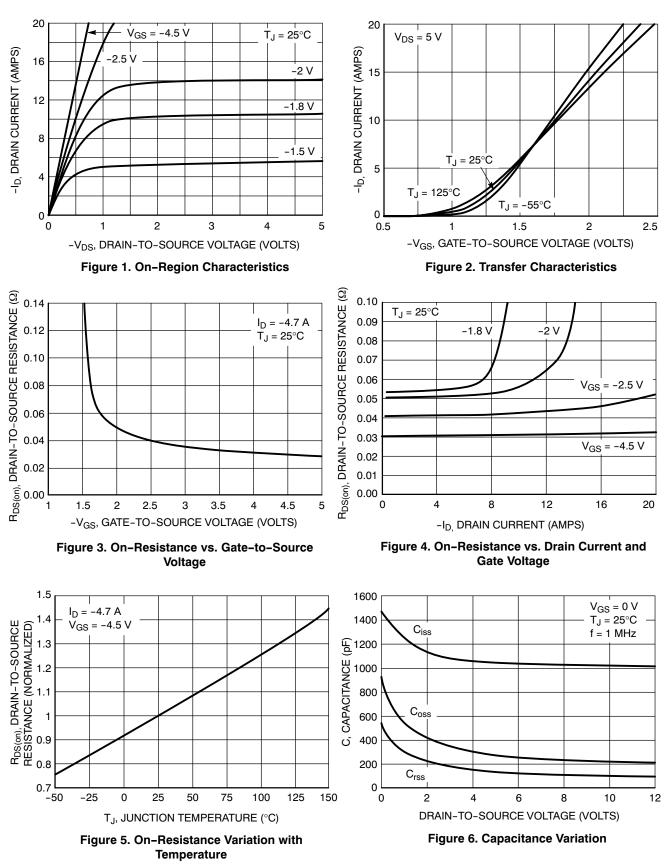
Device	Package	Shipping [†]
NTGS3447PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

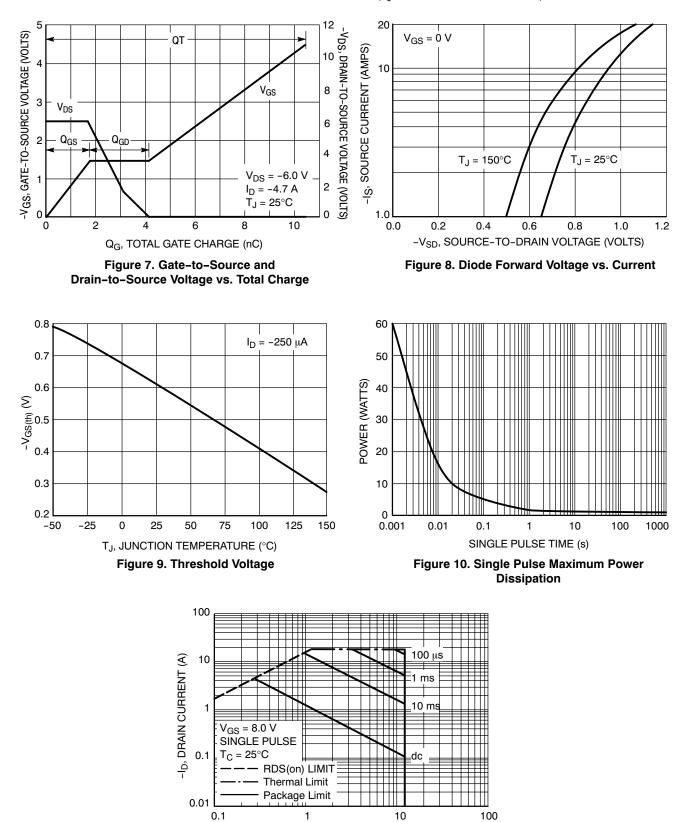
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	100	
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ hetaJA}$	78	°C/W
Junction-to-Ambient – Minimum Pad (Note 4)	$R_{ hetaJA}$	188	

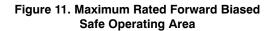
Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)
Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.0775 in sq).

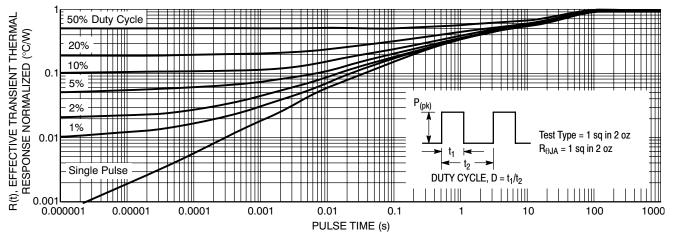

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-12			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	μΑ
	V _{DS} = -12 V	$V_{DS} = -12 V$	T _J = 85°C			-5.0	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _C	_{as} = ±8 V			±0.1	μΑ
ON CHARACTERISTICS (Note 5)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μA	-0.45		-1.0	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V, I _D = -4.7 A			30	40	mΩ
		V_{GS} = -2.5 V, I _D = -4.1 A			40	53	
		V _{GS} = -1.8 V, I _D = -2.0 A			53	72	
Forward Transconductance	9 _{FS}	V _{DS} = -5 V, I _D = -4.7 A			12		S
CHARGES, CAPACITANCES AND GATE F	ESISTANCE						-
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -6 V			1053		pF
Output Capacitance	C _{OSS}				254]
Reverse Transfer Capacitance	C _{RSS}				129		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -4.5 V, V_{DS} = -6 V; I _D = -4.7 A			10.4	15	nC
Threshold Gate Charge	Q _{G(TH)}				1.0		
Gate-to-Source Charge	Q _{GS}				1.7		
Gate-to-Drain Charge	Q _{GD}				0.4		
SWITCHING CHARACTERISTICS, V_{GS} = 4	.5 V (Note 6)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DS} = -6 V, I_D = -1.0 A, R_G = 6.0 Ω			7	11	ns
Rise Time	t _r				14	22	
Turn-Off Delay Time	t _{d(OFF)}				78	117	
Fall Time	t _f				47	71	

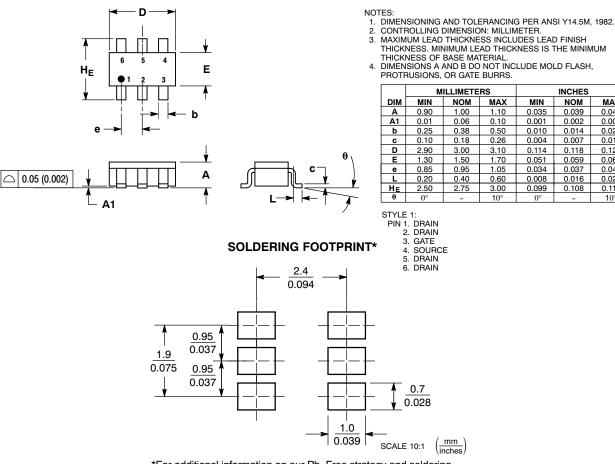

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = -1.7 A	T _J = 25°C	-0.7	-1.2	V
Reverse Recovery Time	t _{RR}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ dI_{SD}/d_t = 100 \ A/\mu s, \\ I_S = -1.7 \ A \end{array}$		33	66	ns


5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)


-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE S

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its petent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative

INCHES

NOM

0.039

0.002

0.014

0.007

0.118

0.059

0.037

0.016

0.108

MAX

0.043

0.004

0.020

0.010

0.122

0.067

0.041

0.024

0.118

10°

NTGS3447P/D